

MATERIAL SAFETY DATA SHEET

DOLPHIN PU FOAM				
Revision Date: 9 th Mar, 2021 Revision No. 2 Number of Pages: 18				

1. PRODUCT AND COMPANY IDENTIFICATION

Product Details

Product Name : DOLPHIN PU FOAM

Recommended Use : Gap Filling Expandable Foam

Company Details

Company Name : Al Muqarram Industry L.L.C.

Address : Etihad Street, Modern Industrial Area, Umm al Thaoob

Post Box No. 24756, Umm Al Quwain, United Arab Emirates

Phone Number : +971 (6) 5353796 Fax No. : +971 (6) 5353964

E-mail ID : info@muqarram.com, sales@muqarram.com

Website : <u>www.muqarram.com</u>

Emergency Telephone Number: 00971-549981925

2. HAZARDS IDENTIFICATION

2.1. Classification of the substance or mixture

2.1.1 Classification according to Regulation EC No 1272/2008 Classified as dangerous according to the criteria of Regulation (EC) No 1272/2008

Class	Category	Hazard statement code(s)
FLAM. AEROSOL	category 1	H222: Extremely flammable aerosol.
CARC.	category 2	H351: Suspected of causing cancer
LACT.		H362: May cause harm to breast-fed children
ACUTE TOX.	category 4	H332: Harmful if inhaled.
STOT RE	category 2	H373: May cause damage to organs through prolonged or repeated exposure if inhaled
EYE IRRIT.	category 2	H319: Causes serious eye irritation
STOT SE	category 3	H335: May cause respiratory irritation
SKIN IRRIT.	category 2	H315: Causes skin irritation.
RESP. SENS.	category 1	H334: May cause allergy or asthma symptoms or breathing difficulties if inhaled.
SKIN SENS.	category 1	H317: May cause an allergic skin reaction

2.1.2 Classification according to Directive 67/548/EEC-1999/45/EC

Classified as dangerous in accordance with the criteria of Directives 67/548/EEC and 1999/45/EC

F+; R12	Extremely flammable.
Carc. Cat. 3; R40	Limited evidence of a carcinogenic effect
Xn; R20 - 48/20	Harmful by inhalation
	Harmful: danger of serious damage to health by prolonged exposure through inhalation.

Xi; R36/37/38	Irritating to eyes, respiratory system and skin.
R42/43	May cause sensitization by inhalation and skin contact.
R64	May cause harm to breastfed babies.

2.2 Label elements:

Labelling according to Regulation EC No 1272/2008 (CLP)

Hazard pictograms

Contains polymethylene polyphenyl isocyanate, 4,4'-methylenediphenyl diisocyanate

Signal word Danger

H-statements

H222 Extremely flammable aerosol.

H351 Suspected of causing cancer H362 May cause harm to breast-fed children.

H332 Harmful if inhaled.

H373 May cause damage to organs through prolonged or repeated exposure if inhaled.

H319 Causes serious eye irritation.H335 May cause respiratory irritation.

H315 Causes skin irritation.

H334 May cause allergy or asthma symptoms or breathing difficulties if inhaled.

H317 May cause an allergic skin reaction.

P-statements

P101 If medical advice is needed, have product container or label at hand

P102 Keep out of reach of children

P210 Keep away from heat/sparks/open flames/hot surfaces. - No smoking.

P251 Pressurized container: Do not pierce or burn, even after use
P280 Wear protective gloves and eye protection/face protection

P260 Do not breathe dust/fume/gas/mist/vapors/spray

P309 + P311 IF exposed or if you feel unwell: Call a POISON CENTER or doctor/physician
P410 + P412 Protect from sunlight do no expose to temperatures exceeding 50 °C/ 122°F
Dispose of contents/container to manufacturer/competent authority

Supplemental information

- Persons already sensitized to di isocyanates may develop allergic reactions when using this product.
- Persons suffering from asthma, eczema or skin problems should avoid contact, including dermal contact, with this product
- This product should not be used under conditions of poor ventilation unless a protective mask with an appropriate gas filter (i.e. type A1 according to standard EN 14387) is used.

Labelling according to Directive 67/548/EEC-1999/45/EC (DSD/DPD)

Labels

Contains: polyethylene polyphenyl isocyanate, 4,4'-methylenediphenyl diisocyanate.

R-phrases

20 Harmful by inhalation

36/37/38 Irritating to eyes, respiratory system and skin 40 Limited evidence of a carcinogenic effect

42/43 May cause sensitisation by inhalation and skin contact

48/20 Harmful: danger of serious damage to health by prolonged exposure through inhalation

64 May cause harm to breastfed babies

S-phrases

23 Do not breathe spray

36/37 Wear suitable protective clothing and gloves

45 In case of accident or if you feel unwell, seek medical advice immediately (show the label)

51 Use only in well-ventilated areas

(63) (In case of accident by inhalation: remove casualty to fresh air and keep at rest)

Additional recommendations

- Keep away from sources of ignition No smoking
- Keep out of the reach of children.
- Pressurized container. Protect from sunlight and do not expose to temperatures exceeding 50°C.
- Do not pierce or burn, even after use.
- Do not spray on a naked flame or any incandescent material.
- Contains isocyanates. See information supplied by the manufacturer.
- Persons already sensitised to diisocyanates may develop allergic reactions when using this product.
- · Persons suffering from asthma, eczema or skin problems should avoid contact, including dermal contact, with this product
- This product should not be used under conditions of poor ventilation unless a protective mask with an appropriate gas filter (i.e. type A1 according to standard EN 14387) is used.

2.3 Other hazards:

DSD/DPD

 Due to insufficient data no statement can be made whether the component(s) fulfil(s) the criteria of PBT and vPvB according to Annex XIII of Regulation (EC) No 1907/2006 May be ignited by sparks Gas/vapour spreads at floor level: ignition hazard Aerosol may explode under the effect of heat

CLP

- Due to insufficient data no statement can be made whether the component(s) fulfil(s) the criteria of PBT and vPvB according to Annex XIII of Regulation (EC) No 1907/2006
- May be ignited by sparks
- Gas/vapour spreads at floor level: ignition hazard
- Aerosol may explode under the effect of heat

AMI |

MSDS

info@mugarram.com

www.mugarram.com

3. COMPOSITION/INFORMATION ON INGREDIENTS

Name	EC NO	CAS-No	Content%	Classification according to CLP
Methylenediphenyl	247-714-0	26447-40-5	36-50%	Carc. Cat. 3;R40 Xn;R20,R48/20
Diisocyanate				Xi;R36/37/38 R42/43
Dimethyl ether	204-065-8	115-10-6	8-15%	F+;R12
Propane (20%)	200-827-9	74-98-6	1-3%	F+;R12
Isobutane(80%)	200-857-2	75-28-5	4-12%	F+;R12
Mixed Polyol blend	NA	NA	35-50%	NA

4. FIRST AID MEASURES

4.1 Description of first aid measures:

General: Check the vital functions. Unconscious: maintain adequate airway and respiration. Respiratory arrest: artificial respiration or oxygen. Cardiac arrest: perform resuscitation. Victim conscious with laboured breathing: halfseated. Victim in shock: on his back with legs slightly raised. Vomiting: prevent asphyxia/aspiration pneumonia. Prevent cooling by covering the victim (no warming up). Keep watching the victim. Give psychological aid. Keep the victim calm, avoid physical strain. Depending on the victim's condition: doctor/hospital.

After inhalation: Remove the victim into fresh air. Respiratory problems: consult a doctor/medical service.

After skin contact: Wash immediately with lots of water. Take victim to a doctor if irritation persists.

After eye contact: Rinse immediately with plenty of water. Do not apply neutralizing agents. Take victim to an ophthalmologist if irritation persists.

After ingestion: Rinse mouth with water. Immediately after ingestion: give lots of water to drink. Do not induce vomiting. Consult a doctor/medical service.

4.2 Most important symptoms and effects, both acute and delayed:

4.2.1 Acute symptoms

After inhalation: Dry/sore throat. Coughing. Irritation of the respiratory tract. Irritation of the nasal mucous membranes. Runny nose. FOLLOWING SYMPTOMS MAY APPEAR LATER: Possible inflammation of the respiratory tract. Risk of lung edema. Respiratory difficulties.

After skin contact: Tingling/irritation of the skin.

After eye contact: Irritation of the eye tissue. Lacrimation.

After ingestion: Not applicable.

4.2.2 Delayed symptoms

No effects known.

4.3 Indication of any immediate medical attention and special treatment needed:

If applicable and available it will be listed below.

5. FIRE FIGHTING MEASURES

5.1 Extinguishing media:

5.1.1 Suitable extinguishing media:

Quantities of water. Polyvalent foam. BC powder. Carbon dioxide.

5.1.2 Unsuitable extinguishing media:

No unsuitable extinguishing media known.

5.2 Special hazards arising from the substance or mixture:

On burning: release of toxic and corrosive gases/vapours (nitrous vapours, hydrogen chloride, carbon monoxide - carbon dioxide). May polymerize on exposure to temperature rise. On heating: release of toxic/combustible gases/vapours (hydrogen cyanide).

AMI MSDS info@muqarram.com www

5.3 Advice for firefighters:

5.3.1 Instructions:

If exposed to fire cool the closed containers by spraying with water. Physical explosion risk: extinguish/cool from behind cover. Do not move the load if exposed to heat. After cooling: persistent risk of physical explosion. Dilute toxic gases with water spray.

5.3.2 Special protective equipment for fire-fighters:

Heat/fire exposure: compressed air/oxygen apparatus. Gloves. Protective goggles. Head/neck protection. Protective clothing.

6. ACCIDENTAL RELEASE MEASURES

6.1 Personal precautions, protective equipment and emergency procedures:

Stop engines and no smoking. No naked flames or sparks. Spark- and explosion-proof appliances and lightin equipment.

6.1.1 Protective equipment for non-emergency personnel

See heading 8.2

6.1.2 Protective equipment for emergency responders

Gloves. Protective goggles. Head/neck protection. Protective clothing.

6.2 Environmental precautions:

Dam up the solid spill. Use appropriate containment to avoid environmental contamination.

6.3 Methods and material for containment and cleaning up:

Allow product to solidify and remove it by mechanical means. Take collected spill to manufacturer/competent authority. Clean (treat) contaminated surfaces with acetone. Take collected spill to manufacturer/competent authority. Wash clothing and equipment after handling.

6.4 Reference to other sections: See heading 13.

7. HANDLING AND STORAGE

The information in this section is a general description. If applicable and available, exposure scenarios are attached in annex. Always use the relevant exposure scenarios that correspond to your identified use.

7.1 Precautions for safe handling:

Use spark-/explosionproof appliances and lighting system. Keep away from naked flames/heat. Keep away from ignition sources/sparks. Observe very strict hygiene - avoid contact. Remove contaminated clothing immediately.

7.2 Conditions for safe storage, including any incompatibilities:

7.2.1 Safe storage requirements:

Ventilation at floor level. Store in a cool area. Keep out of direct sunlight. Store in a dry area. Fireproof storeroom. Unauthorized persons are not admitted. Meet the legal requirements. 1 year(s). < 50 °C.

7.2.2 Keep away from:

(Strong) acids, (strong) bases, heat sources, ignition sources.

7.2.3 Suitable packaging material:

Aerosol.

7.2.4 Non suitable packaging material:

No data available

7.3 Specific end use(s):

If applicable and available, exposure scenarios are attached in annex. See information supplied by the manufacturer.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

8.1 Control parameters:

8.1.1 Occupational exposure

a) Occupational exposure limit values

If limit values are applicable and available these will be listed below.

Regulator	AVNOSTIPA	limit	(The	Netherlands	١
Regulatory	/ exposure	HILLING	(IIIe	Netherianus	

	Short time value	1500 mg/m³
Dimethylether	Short time value, calculated	783 ppm
	Time-weighted average exposure limit 8 h	950 mg/m³
	Time-weighted average exposure limit, calculated	496 ppm

Indicative exposure limit (The Netherlands)

	Short time value	0.21 mg/m ³
Difenylmethaan-4,4'diisocyanaat	Short time value, calculated	0.02 ppm
	Time-weighted average exposure limit 8 h	0.05 mg/m ³
	Time-weighted average exposure limit, calculated	0.0048 ppm

Indicative exposure limit EU

	Short time value	- ppm
Dimethylether	Time-weighted average exposure limit 8 h	1000 ppm
		1920 mg/m³

Limit Value (Belgium)

4,4'-Diisocyanate de diphénylméthane (MDI)	Short time value	- ppm - mg/m³
	Time-weighted average exposure limit 8 h	0.005 ppm 0.052 mg/m ³
Oxyde de diméthyle	Short time value	- ppm - mg/m³
	Time-weighted average exposure limit 8 h	1000 ppm 1920 mg/m³
Hydrocarbures aliphatiques sous forme gazeuse : (Alcanes C1-C4)	Short time value	- ppm - mg/m ³
	Time-weighted average exposure limit 8 h	1000 ppm - mg/m³
	Short time value	- ppm - mg/m³
	Time-weighted average exposure limit 8 h	1000 ppm - mg/m ³

TLV (USA)

. 2 0 (00) ()		
Methylene bisphenyl isocyanate	Short time value	-
(MDI)	Time-weighted average exposure limit 8 h	0.005 ppm
Aliphatic hydrocarbon gases -	Short time value	-
alkanes(C1-C4)	Time-weighted average exposure limit 8 h	1000 ppm

TRGS 900 (Germany)

,				
Isobutan	Time-weighted average exposure limit 8 h	1000 ppm 2400 mg/m³		
Dimethylether	Time-weighted average exposure limit 8 h	1000 ppm 1900 mg/m³		
4,4'-Methylen- Diphenyldiisocyanat	Time-weighted average exposure limit 8 h	0.05 mg/m ³		
Propan	Time-weighted average exposure limit 8 h	1000 ppm 1800 mg/m³		

Limit Value (France)		
4,4'-Diisocyanate de Diphénylméthane	Short time value	0.02(5 min) ppm 0.2(5 min) mg/m ³
	Time-weighted average exposure limit 8 h	0.01 ppm 0.1 mg/m³
Oxyde de diméthyle	Short time value	- ppm - mg/m³
	Time-weighted average exposure limit 8 h	1000 ppm 1920 mg/m ³

Limit Value (UK)

Entitle Value (Oit)		
Isocyanates, all (as -NCO)	Short time value	-(-NCO) ppm 0.07(-NCO) mg/m ³
	Time-weighted average exposure limit 8 h	-(-NCO) ppm 0.02(-NCO) mg/m ³
Dimethyl ether	Short time value	500 ppm 958 mg/m³
	Time-weighted average exposure limit 8 h	400 ppm 766 mg/m ³

b) National biological limit values

If limit values are applicable and available these will be listed below.

8.1.2 Sampling methods

Product name	Test	Number
Isocyanates	NIOSH	5522
4,4'-Methylenebis(phenylisocyanate)	NIOSH	5525
Methylene Bisphenyl Isocyanate	OSHA	47
4,4-Methylene Bisphenyl Isocyanate (MDI) (Isocyanates)	NIOSH	5521
Isocyanates	NIOSH	5521

8.1.3 Applicable limit values when using the substance or mixture as intended

If limit values are applicable and available these will be listed below

8.1.4 DNEL/PNEC values

Workers

4,4'-methylenediphenyl diisocyanate

Effect level (DNEL/DMEL)	Type Value				
	Acute systemic effects dermal	50 mg/kg bw/day			
	Acute systemic effects inhalation	0.1 mg/m ³			
DNEL	Acute local effects dermal	28.7 mg/cm ²			
	Acute local effects inhalation	0.1 mg/m ³			
	Long-term systemic effects inhalation	0.05 mg/m ³			
	Long-term local effects inhalation	0.05 mg/m ³			

alkanes, C14-17, chloro;

Effect level (DNEL/DMEL)	Туре	Value	
DNEL	Acute systemic effects dermal	47.9 mg/kg bw/day	
	Acute systemic effects inhalation	6.7 mg/m ³	

General population

4,4'-methylenediphenyl diisocyanate

Effect level	Туре	Value
(DNEL/DMEL)		
	Acute systemic effects dermal	25 mg/kg bw/day
DNEL	Acute systemic effects inhalation	0.05 mg/m ³
	Acute -systemic effects oral	20 mg/kg bw/day
	Acute local effects dermal	17.2 mg/cm ²
	Acute local effects inhalation	0.05 mg/m ³
	Long-term systemic effects inhalation	0.025 mg/m ³
	Long-term local effects inhalation	0.025 mg/m ³

alkanes, C14-17, chloro:

Effect level (DNEL/DMEL)	Туре	Value	
DNEL	Long-term systemic effects dermal	28.75 mg/kg bw/day	
	Long-term systemic effects inhalation	2 mg/m ³	
	Long-term systemic effects oral	0.58 mg/kg bw/day	

PNEC

4,4'-methylenediphenyl diisocyanate

i, i memi i i i i i i i i i i i i i i i i	
Compartments	Value
Fresh water	1 mg/l
Marine water	0.1 mg/l
aqua (intermittent releases)	10 mg/l
STP	1 mg/l
Soil	1 mg/kg soil dw

8.1.5 Control banding

If applicable and available it will be listed below.

8.2 Exposure controls:

AMI

The information in this section is a general description. If applicable and available, exposure scenarios are attached in annex. Always use the relevant exposure scenarios that correspond to your identified use.

8.2.1 Appropriate engineering controls

Use spark-/explosionproof appliances and lighting system. Keep away from naked flames/heat. Keep away from ignition sources/sparks. Measure the concentration in the air regularly.

8.2.2 Individual protection measures, such as personal protective equipment

Observe very strict hygiene - avoid contact. Do not eat, drink or smoke during work.

a) Respiratory protection:

Wear gas mask with filter type A if conc. in air > exposure limit.

b) Hand protection:

Gloves

MSDS

Materials	Breakthrough time	Thickness
LDPE (Low Density Poly Ethylene)	10 minutes	0.025 mm

c) Eye protection:

Protective goggles.

d) Skin protection:

Head/neck protection. Protective clothing.

info@muqarram.com www.muqarram.com

8.2.3 Environmental exposure controls:

See headings 6.2, 6.3 and 13

9. PHYSICAL AND CHEMICAL PROPERTIES

9.1 Information on basic physical and chemical properties:

Physical form Aerosol

Odour Characteristic odour
Odour threshold No data available

Colour Variable in colour, depending on the composition

Particle size Not applicable Explosion limits No data available

Flammability Extremely flammable aerosol.

Log Kow No data available Dynamic viscosity No data available No data available Kinematic viscosity No data available Melting point No data available **Boiling point** Flash point No data available **Evaporation rate** No data available Vapour pressure No data available

Relative vapour density > 1

Solubility water; insoluble

organic solvents; soluble

Relative density 0.95

Decomposition temperature No data available **Auto-ignition temperature** No data available

Explosive propertiesNo chemical group associated with explosive properties **Oxidising properties**No chemical group associated with oxidising properties

pH No data available

Physical hazards
Flammable aerosol

9.2 Other information:

Absolute density 950 kg/m³

10. STABILITY AND REACTIVITY

10.1Reactivity:

May be ignited by sparks. Gas/vapour spreads at floor level: ignition hazard

10.2 Chemical stability:

Stable under normal conditions.

10.3 Possibility of hazardous reactions:

May polymerize with many compounds e.g.: (strong) bases and amines. Reacts violently with (some) acids/bases.

10.4 Conditions to avoid:

Use spark-/explosionproof appliances and lighting system. Keep away from naked flames/heat. Keep away from ignition sources/sparks.

10.5 Incompatible materials:

(strong) acids, (strong) bases

11. TOXICOLOGICAL INFORMATION

11.1 Information on toxicological effects:

11.1.1 Test results

Acute toxicity

Dolphin PU foam

No (test)data on the mixture available

polymethylene polyphenyl isocyanate

Route of exposure	Parameter	Method	Value	Exposure time	Species	Gender	Value determination
Oral	LD50		>10000 mg/kg		Rat		Literature study
Dermal	LD50		> 5000 mg/kg		Rabbit		Literature study

4,4'-methylenediphenyl diisocyanate

Route of	Parameter	Method	Value	Exposure	Species	Gender	Value
exposure				time			determination
Oral	LD50	Other	>2000 mg/kg		Rat	Male/ female	Read-across
Dermal	LD50	Equivalent to OECD 402	>9400 mg/kg bw	24 h	Rabbit	Male/ female	Read-across
Inhalation (aerosol)	LC50	OECD 403	>2.24 mg/l	1 h	Rat	Male/ female	Experimental value

alkanes, C14-17, chloro;

Route of	Parameter	Method	Value	Exposure	Species	Gender	Value
exposure				time			determination
Oral	LD50	Other	>10 ml/kg		Rat		Experimental value
Oral	LD50	Other	>4000 ml/kg		Rat	Male/ female	Experimental value
Dermal	LD50		>13500 mg/kg bw	24 h	Rabbit		Read-across
Dermal	LD50		>2800 mg/kg bw	24 h	Rat		Read-across
Inhalation	LC50	Other	>3.3 mg/l	1 h	Rat		Read-across
Inhalation (vapours)	LC50	Other	>48170 mg/m³	1 h	Rat		Read-across

dimethyl ether

annethyr ether							
Route of	Parameter	Method	Value	Exposure	Species	Gender	Value
exposure				time			determination
Inhalation	LC50		309 mg/l	4 h	Rat		Literature study
Inhalation	LC50		163991	4 h	Rat		Literature
			ppm				study

Pro	na	ne
110	νa	110

Route of	Parameter	Method	Value	Exposure	Species	Gender	Value
exposure				time			determination

Inhalation	LC50	513 mg/l	4 h	Rat	Literature
Inhalation	LC50	280000	4 h	Rat	Literature
		ppm			

<u>isobutane</u>

Route of exposure	Parameter	Method	Value	Exposure time	Species	Gender	Value determination
Inhalation	LC50		> 50 mg/l	4 h	Rat		Literature

Classification of the mixture is based on the relevant ingredients of the mixture

Conclusion

Harmful if inhaled

Low acute toxicity by the dermal route

Low acute toxicity by the oral route

Corrosion/irritation

Dolphin PU foam

No (test)data on the mixture available

polymethylene polyphenyl isocyanate

Route of exposure	Result	Method	Exposure time	Time Point	Species	Value determination
Eye	Irritating					Literature Study
Skin	Irritating					Literature Study
Inhalation	Irritating					Literature Study

4,4'-methylenediphenyl diisocyanate

Route of exposure	Result	Method	Exposure time	Time Point	Species	Value determination
Eye	Irritating				Human	Weight of evidence
Skin	Irritating	OECD 404	4 h	24; 48; 72 hrs	Rabbit	Read- across
Inhalation	Irritating				Human	Weight of evidence

alkanes, C14-17, chloro;

Route of exposure	Result	Method	Exposure time	Time Point	Species	Value determination
Eye	Slightly irritating				Rabbit	Expert judgment
Skin	Slightly irritating	OECD 404	4 h	24; 72 hrs	Rabbit	Expert iudgment

Classification of the mixture is based on the relevant ingredients of the mixture

Conclusion

Causes skin irritation.

Causes serious eye irritation. May cause respiratory irritation

Respiratory or skin sensitisation

Dolphin PU foam

No	(test)data on	the mixture	availab	le

noly	meth	/lene	noly	/nh	env	lisocy	/anate
pur	/IIICuii	/ICIIC	μυι	/PI	іспу	11300	allate

Route of exposure	Result	Method	Exposure time	Observation Time point	Species	Gender	Value determination
Skin	Sensitizing						Literature study
Inhalation	Sensitizing						Literature study

4,4'-methylenediphenyl diisocyanate

Route of	Result	Method	Exposure	Observation	Species	Gender	Value
exposure			time	Time point			determination
Skin	Sensitizing						Literature study
Inhalation	Sensitizing				Guinea pig	Female	Experimental value
Inhalation	Sensitizing	Other			Rat	Male	Experimental value

alkanes, C14-17, chloro;

Route of exposure	Result	Method	Exposure time	Observation Time point	Species	Gender	Value determination
Skin	Not Sensitizing	Other		48 hours	Guinea pig		Experimental value

Classification of the mixture is based on the relevant ingredients

Conclusion

May cause an allergic skin reaction.

May cause allergy or asthma symptoms or breathing difficulties if inhaled.

Specific target organ toxicity

Dolphin PU foam

No (test)data on the mixture available

4,4'-methylenediphenyl diisocyanate

Route of exposure	Parameter	Method	Value	Organ	Effect	Exposure Time	Species	Gender	Value determinat ion
Inhalation (aerosol)	NOAEC	Equivalent to OECD 453	0.2 mg/m³		No effect	104 weeks (6h/day, 5 days/ week)	Rat	Male/ female	Read- across
Inhalation (aerosol)	LOAEC	Equivalent to OECD 453	1 mg/m³	Respiratory tract		104 weeks (6h/day, 5 days/ week)	Rat	Male/ female	Read- across

alkanes, C14-17, chloro;

Route of	Parameter	Method	Value	Organ	Effect	Exposure	Species	Gender	Value
exposure						Time			determinat
									ion

MSDS info@muqarram.com

Oral	NOAEL	Equivalent to OECD 408	300 ppm	Liver; kidney	No adverse systemic effects	13 week(s)	Rat	Male/ female	Experiment al value
Oral	NOAEL	Equivalent to OECD 408	100 mg/kg bw/day	Kidney	No adverse systemic effects	13 week(s)	Rat	Male/ female	Experiment al value

Classification of the mixture is based on the relevant ingredients of the mixture

Conclusion

May cause damage to organs through prolonged or repeated exposure if inhaled.

Low sub-chronic toxicity by the dermal route

Low sub-chronic toxicity by the oral route

Mutagenicity (in vitro)

Dolphin PU foam

No (test)data on the mixture available

4,4'-methylenediphenyl diisocyanate

Result	Method	Test Substrate	Effect	Value Determination
Negative	Equivalent to OECD	Bacteria		Experimental value
	471	(S.typhimurium)		

alkanes, C14-17, chloro:

Result	Method	Test Substrate	Effect	Value Determination
Negative with metabolic activation, negative without metabolic activation	OECD 471	Bacteria (S.typhimurium)		Experimental value

12. ECOLOGICAL INFORMATION

12.1 Toxicity

Dolphin PU Foam

No (test)data on the mixture available

polymethylene polyphenyl isocyanate

	Parameter	Method	Value	Duration	Species	Test design	Fresh/salt water	Value determination
Acute toxicity other aquatic organisms	LC50		>1000 mg/l	96 h				Literature study
Toxicity aquatic micro-organisms	EC50	OECD 209	>100 mg/l		Activated sludge			Literature study

4,4'-methylenediphenyl diisocyanate

	Parameter	Method	Value	Duration	Species	Test design	Fresh/salt water	Value determination
Acute toxicity fishes	LC50	OECD 203	> 1000 mg/l	96 h	Danio rerio	Static system	Fresh water	Read-across

Acute toxicity invertebrates	EC50	OECD 202	129.7 mg/l	24 h	Daphnia magna	Static system	Fresh water	Read-across
Toxicity algae and other aquatic plants	EC50	OECD 201	> 1640 mg/l	72 h	Desmodesmus subspicatus	Static system	Fresh water	Read-across
Long-term toxicity aquatic invertebrates	NOEC	OECD 211	≥10 mg/l	21 day(s)	Daphnia magna	Semi-static	Fresh water	Read-across
Toxicity aquatic micro-organisms	EC50	OECD 209	>100 mg/l	3 h	Activated sludge	Static system	Fresh water	Read-across

dimethyl ether

diffictify ctrici								
	Parameter	Method	Value	Duration	Species	Test design	Fresh/salt water	Value determination
Acute toxicity fishes	LC50		>1000 mg/l	96 h	Pisces			
Acute toxicity other aquatic organisms	LC50		>4400 mg/l	48 h	Daphnia magna			

Propane

	Parameter	Method	Value	Duration	Species	Test design	Fresh/salt water	Value determination
Acute toxicity fishes	LC50		>1000 mg/l	96 h	Pisces			

Conclusion: No data available on ecotoxicity

12.2. Persistence and degradability

polymethylene polyphenyl isocyanate

Biodegradation water

Method	Value	Duration	Value Determination
OECD 302C: Inherent Biodegradability:	< 60 %		Experimental value
Modified MITI Test (II)			

4,4'-methylenediphenyl diisocyanate

Biodegradation water

Method	Value	Duration	Value Determination
OECD 302C: Inherent Biodegradability:	0 %	28 day(s)	Read-across
Modified MITI Test (II)			

dimethyl ether

Biodegradation water

Method	Value	Duration	Value Determination
OECD 301A: DOC Die-Away Test	5 %	28 day(s)	Experimental value

<u>propane</u> **Biodegradation water**

ı	Dioucgiauation water				
	Method	Value	Duration	Value Determination	

MSDS **AMI** info@muqarram.com www.mugarram.com

L- MUQAKKAM IN	DUSTRY					AI MUQ	arram Industry L.
OECD 301E: Mod Screening Test	ified OECD	70 %					Experimental value
a hutana							
sobutane							
Biodegradation wa	ater	Value			Duration		Value Determination
ivietnoa		72.6 %			Duration 35 day(s)		Value Determination
		50 %	0		16 - 26 day(/cl	
		50 %			10 - 20 uay(.5)	
Conclusion: Contai	ns non readily b	oiodegrac	lable component	(s)			
L2.3 Bioaccumulat	ive potential:						
polymethylene p		anate					
BCF fishes							
Parameter	Method		Value	Dura	tion	Species	Value Determination
BCF			1			Pisces	Literature Study
							<u> </u>
4,4'-methylenedi	ohenyl diisocyar	nate_					
BCF fishes							
Parameter	Method		Value	Dura	tion	Species	Value Determination
BCF	OECD 305		92-200	4 wee	ek(s)	Cyprinus carpio	Experimental value
og Kow		1			I = .		
Method		Value			Temperatu	ire	Value Determination
		5.22					Estimated value
og Kow Method		Value			Temperatu	ire	Value Determination
		5.5 - >	•6				Literature
limethyl ether							
		Value			Temperatu	ıre	Value Determination
dimethyl ether Log Kow Method		Value			Temperatu	ire	Value Determination Experimental value
og Kow					Temperatu	ire	
oropane					Temperatu	ire	
og Kow Method oropane OCF fishes							Experimental value
oropane BCF fishes Parameter	Method		Value	Dura		Species	
oropane SCF fishes	Method			Dura			Experimental value
oropane BCF fishes Parameter BCF	Method		Value	Dura		Species	Experimental value
oropane BCF fishes Parameter BCF	Method		Value 9 -25	Dura		Species Pisces	Experimental value
oropane BCF fishes Parameter BCF	Method	0.10	Value 9 -25	Dura	tion	Species Pisces	Experimental value Value Determination
oropane BCF fishes Parameter BCF	Method	0.10	Value 9 -25	Dura	tion	Species Pisces	Value Determination Value Determination
oropane BCF fishes Parameter BCF Og Kow Method	Method	0.10	Value 9 -25	Dura	tion	Species Pisces	Value Determination Value Determination
og Kow Method oropane OCF fishes Parameter BCF og Kow Method	Method	0.10	Value 9 -25	Dura	tion	Species Pisces	Value Determination Value Determination
og Kow Method Oropane BCF fishes Parameter BCF Og Kow Method Sobutane BCF fishes		0.10	Value 9 -25		tion Temperatu	Species Pisces	Value Determination Value Determination Experimental value
Oropane BCF fishes Parameter BCF Og Kow Method	Method	0.10	Value 9 -25	Dura	tion Temperatu	Species Pisces	Value Determination Value Determination
Oropane BCF fishes Parameter BCF Og Kow Method Sobutane BCF fishes Parameter		0.10	Value 9 -25		tion Temperatu	Species Pisces	Value Determination Value Determination Experimental value
oropane OCF fishes Parameter BCF OCF Model OCF	Method	0.10	Value 9 -25		tion Temperatu	Species Pisces	Value Determination Value Determination Experimental value
Oropane BCF fishes Parameter BCF Og Kow Method Sobutane BCF fishes Parameter	Method	0.10	Value 9 -25		tion Temperatu	Species Pisces	Value Determination Value Determination Experimental value

ı	Log Kow				
	Method	Value	Temperature	Value Determination	
		2.76 – 2.68		Experimental value	

Conclusion

Contains bioaccumulative component(s)

12.4 Mobility in soil:

4,4'-methylenediphenyl diisocyanate

Volatility (Henry's Law constant H)

Method	Method	Temperature	Value Determination
8.95E-7 atm m³/mol		25°C	Estimated value

Conclusion

No (test)data on the mixture available

12.5 Results of PBT and vPvB assessment:

Due to insufficient data no statement can be made whether the component(s) fulfil(s) the criteria of PBT and vPvB according to Annex XIII of Regulation (EC) No 1907/2006.

12.6 Other adverse effects:

Dolphin PU foam

Ozone-depleting potential (ODP)

Not dangerous for the ozone layer (1999/45/EC)

polymethylene polyphenyl isocyanate

Ozone-depleting potential (ODP)

Not dangerous for the ozone layer (Council Regulation (EC) no 1005/2009)

4,4'-methylenediphenyl diisocyanate

Ozone-depleting potential (ODP)

Not dangerous for the ozone layer (Council Regulation (EC) no 1005/2009)

Water ecotoxicity reaction products

Reaction products are harmful to aquatic organisms

alkanes, C14-17, chloro;

Ozone-depleting potential (ODP)

Not dangerous for the ozone layer (Council Regulation (EC) no 1005/2009)

dimethyl ether

Ozone-depleting potential (ODP)

Not dangerous for the ozone layer (Council Regulation (EC) no 1005/2009)

Ground water

Ground water pollutant

propane

Ozone-depleting potential (ODP)

Not dangerous for the ozone layer (Council Regulation (EC) no 1005/2009)

<u>isobutane</u>

Ozone-depleting potential (ODP)

Not dangerous for the ozone layer (Council Regulation (EC) no 1005/2009)

13. DISPOSAL CONSIDERATIONS

The information in this section is a general description. If applicable and available, exposure scenarios are attached in annex. Always use the relevant exposure scenarios that correspond to your identified use.

13.1 Waste treatment methods:

13.1.1 Provisions relating to waste

Waste material code (Directive 2008/98/EC, decision 2001/118/EC).

08 04 09* (waste adhesives and sealants containing organic solvents or other dangerous substances). Depending on branch of industry and production

Process, also other EURAL codes may be applicable. Hazardous waste according to Directive 2008/98/EC.

13.1.2 Disposal methods

Remove waste in accordance with local and/or national regulations. Hazardous waste shall not be mixed together with other waste. Different types of hazardous waste shall not be mixed together if this may entail a risk of pollution or create problems for the further management of the waste. Hazardous waste shall be managed responsibly. All entities that store, transport or handle hazardous waste shall take the necessary measures to prevent risks of pollution or damage to people or animals. Specific treatment. Do not discharge into drains or the environment.

13.1.3 Packaging/Container

Waste material code packaging (Directive 2008/98/EC).

15 01 10* (packaging containing residues of or contaminated by dangerous substances).

14. TR	ANSPORT	INFORMATION

Road (ADR)

14.1 UN Number

1950 **UN Number**

14.2 UN Proper Shipping Name

Proper Shipping Name Aerosols

14.3 Transport Hazard class(es)

Class 2

Classification Code SF

14.4 Packing Group

Labels 2.1

14.5 Environmental Hazards

Environmentally hazardous substance mark No

Rail (RID

14.1 UN Number

UN Number 1950

14.2 UN Proper Shipping Name

Proper Shipping Name Aerosols

14.3 Transport Hazard class(es)

Hazard Identification No. 23

Classification Code SF

14.4 Packing Group

Labels 2.1

14.5 Environmental Hazards

Environmentally hazardous substance mark No

Inland Waterways

14.1 UN Number

1950 **UN Number**

14.2 UN Proper Shipping Name

Proper Shipping Name Aerosols

14.3 Transport Hazard class(es)

Class 2

Classification Code SF

14.4 Packing Group

Labels 2.1

14.5 Environmental Hazards

Environmentally hazardous substance mark No

Sea (IMDG)

14.1 UN Number

UN Number 1950

14.2 UN Proper Shipping Name

Proper Shipping Name Aerosols

14.3 Transport Hazard class(es)

Class 2.1

14.4 Packing Group

Labels 2.1

14.5 Environmental Hazards

Environmentally hazardous substance mark No

Air (ICAO-TI/IATA-DGR)

14.1 UN Number

UN Number 1950

14.2 UN Proper Shipping Name

Proper Shipping Name Aerosols

14.3 Transport Hazard class(es)

Class 2.1

14.4 Packing Group

Labels 2.1

14.5 Environmental Hazards

Environmentally hazardous substance mark

15. REGULATORY INFORMATION

Risk phrases:

R12: Extremely flammable.

R18: In use, may form flammable/explosive vapour-air mixture.

R 20: Harmful by inhalation.

R 36/37/38: Irritati ng to eyes, respiratory system and skin.

R 42/43: May cause sensitisation by inhalation and skin contact

National Legislation/Regulations:

COMMI SSION REGULATION (EU) No 453/2010 of 20 May 2010 amending Regulation (EC) No. 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation

16. OTHER INFORMATION

General Information

This product should be used as directed. For further information, please consult product data sheets and application information bulletin for this product.

No

Further Information

The information contained herein is based on the present state of our knowledge. It characterizes the product with regard to the appropriate health and safety precaution, and hazard information. It does not represent a guarantee of the properties of product.

Revision Comments

This safety data sheet supersedes all previous issues and users are cautioned to ensure that it is correct.

DISCLAIMER

This information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process. Such information is, to the best of the company's knowledge and belief, accurate and reliable as of the date indicated.

However, no warranty guarantee or representation is made to its accuracy, reliability or completeness. It is the user's responsibility to satisfy himself as to the suitability of such information for his own particular use.